Algebra II 11-6 Infinite Geometric Series

Sum of an infinite geometric series:

$$
\mathrm{S}_{n}=\frac{a_{1}}{1-r}
$$

IMPORTANT: $|r|<1$, otherwise there is no sum.

For each geometric series, find the sum. If the series has no sum, say so.

1) $24+12+6+3+\ldots$
$r=\frac{1}{2}$ Is $|r|<1$? Yes!

$$
S_{\infty}=\frac{a_{1}}{1-r}=\frac{24}{1-\frac{1}{2}}=\frac{24}{\frac{1}{2}}=24 . \frac{2}{1}=48
$$

For each geometric series, find the sum. If the series has no sum, say so.

$$
\text { 11) } \sum_{n=0}^{\infty} 3\left(\frac{1}{4}\right)^{n}=3\left(\frac{1}{4}\right)^{0}+\left[\begin{array}{c}
\frac{3}{4}+\frac{3}{16} \\
a_{0}
\end{array}\right]\left[\begin{array}{c}
3\left(\frac{1}{4}\right)^{\prime}+3 \\
a_{1}
\end{array}\right]
$$

Is $|r|<1 ? \quad \mathbf{r}=\frac{1}{4}$ Yes!

$$
S_{\infty}=\frac{a_{1}}{1-r}=3+\frac{\frac{3}{4}}{1-\left(\frac{1}{4}\right)}=3+\frac{\frac{3}{4}}{\frac{3}{4}}=3+1=4
$$

Write the first three terms of the infinite geometric series satisfying the given condition.
23) $t_{1}=8, S_{\infty}=12$

$$
\begin{aligned}
& a_{1}=8 \\
& a_{2}=8\left(\frac{1}{3}\right)=\frac{8}{3} \\
& a_{3}=\frac{8}{3}\left(\frac{1}{3}\right)=\frac{8}{9}
\end{aligned}
$$

$$
\frac{12}{1}=\frac{8}{1-r}
$$

Means Extremes Thu

$$
\begin{aligned}
1-r & =\frac{8}{12} \\
1-1-r & =\frac{2}{3}-1 \\
-r & =-\frac{1}{3} \\
r & =\frac{1}{3}
\end{aligned}
$$

> Assignment: pg 533 $1-12$ all, $24-26$ all

